Duality theory for enriched Priestley spaces
نویسندگان
چکیده
The term Stone-type duality often refers to a dual equivalence between category of lattices or other partially ordered structures on one side and topological the other. This paper is part larger endeavour that aims extend web dualities from metric and, more generally, quantale-enriched categories. In particular, we improve our previous work show how certain results for categories [ 0 , 1 ] -enriched Priestley spaces relations can be restricted functions. broader context, investigate continuous functors, with emphasis those properties which identify algebraic nature this category.
منابع مشابه
Priestley Duality for Bilattices
We develop a Priestley-style duality theory for different classes of algebras having a bilattice reduct. A similar investigation has already been realized by B. Mobasher, D. Pigozzi, G. Slutzki and G. Voutsadakis, but only from an abstract category-theoretic point of view. In the present work we are instead interested in a concrete study of the topological spaces that correspond to bilattices a...
متن کاملPriestley duality for N4-lattices
We present a new Priestley-style topological duality for bounded N4-lattices, which are the algebraic counterpart of paraconsistent Nelson logic. Our duality differs from the existing one, due to Odintsov, in that we only rely on Esakia duality for Heyting algebras and not on the duality for De Morgan algebras of Cornish and Fowler. A major advantage of our approach is that for our topological ...
متن کاملDescent for Priestley Spaces
A characterization of descent morphism in the category of Priestley spaces, as well as necessary and sufficient conditions for such morphisms to be effective are given. For that we embed this category in suitable categories of preordered topological spaces were descent and effective morphisms are described using the monadic description of descent.
متن کاملPriestley Duality for Strong Proximity Lattices
In 1937 Marshall Stone extended his celebrated representation theorem for Boolean algebras to distributive lattices. In modern terminology, the representing topological spaces are zero-dimensional stably compact, but typically not Hausdorff. In 1970, Hilary Priestley realised that Stone’s topology could be enriched to yield orderdisconnected compact ordered spaces. In the present paper, we gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2023
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2022.107231